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H I G H L I G H T S

• Working memory (WM) improves after multiple sessions of tDCS.

• Improvement is associated with enhanced theta and decreased alpha.

• We tested whether 1 session of tACS would elicit the same WM benefits.

• Frontoparietal slow theta (4.5 Hz), but not fast (7 Hz), or bifrontal tACS improved object WM.

• No benefit of tACS extended to spatial WM.
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A B S T R A C T

Working memory (WM) can be improved after repeated training sessions paired with noninvasive neuro-
stimulation techniques. Previously, we reported that WM training paired with tDCS succeeded behaviorally by
enhancing anterior-posterior theta phase coherence and reducing alpha power. Here, in two experiments we
tested several theta and alpha frequencies and two transcranial alternating current stimulation (tACS) montages
in an effort to shortcut WM training while preserving behavioral gains. In Experiment 1, in separate sessions
participants received online tACS at two frequencies derived from the previous study with the respective goal of
improving and impairing WM performance. We selected the mean group peak value theta (7 Hz) to benefit WM
and alpha (11 Hz) to impair WM. Stimulation (tACS) over right frontoparietal sites (F4-P4) during 3-back WM
tasks (object, spatial) produced no behavioral consequences. In Experiment 2 we stimulated at a slower theta
frequency (4.5 Hz), which was also significant in our prior study, and tested whether frontoparietal or bifrontal
montages would be more effective at improving WM. This experiment revealed selectively improved object WM
after right frontoparietal tACS alone. In summary, one session of tACS failed to produce the magnitude or
breadth of WM gains observed after 4–10 tDCS-WM training sessions. In short, despite looking for loopholes we
found little tACS savings.

1. Introduction

Working memory (WM) provides a mental workspace permitting
most cognitive tasks (e.g., Conway et al., 2003; Kane and Engle, 2002).
Strikingly, WM is capacity limited (e.g., Cowan, 2001). Consequently,
there is interest in enhancing, or restoring WM. Yet, WM resists im-
provement, and there is considerable debate regarding the benefits of
WM training (reviewed in: Karbach et al., 2015; Melby-Lervag and
Hulme, 2013; Morrison and Chein, 2011; Owen et al., 2010; Sala and
Gobet, 2017; Shipstead et al., 2012; von Bastian and Eschen, 2016; von
Bastian and Oberauer, 2014). Recently, studies pairing WM training

with noninvasive transcranial direct current stimulation (tDCS) re-
ported durable behavioral improvement and transfer to untrained tasks
(reviewed in: Berryhill, 2017; Berryhill and Martin, 2018). A major
problem is that the underlying mechanism of tDCS-augmented WM
gains remains poorly understood.

To address this, we previously conducted a 4-day WM training with
frontoparietal tDCS study and pre- and post- training EEG recording
(Jones et al., 2017). WM improved beyond the gains provided by
training alone. EEG revealed that post- training, the active tDCS group
selectively showed heightened frontal-posterior theta-alpha phase
locking (4.5–8.5 Hz, peak: 7 Hz) during WM maintenance. We
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interpreted this as strengthened connectivity, which we argued was
important in improving WM performance. The sham tDCS group
showed no neural or behavioral changes. This finding is consistent with
others’ reporting superior WM performance associated with greater
phase coupling (Liebe et al., 2012; Sauseng et al., 2004; Schack et al.,
2005). After training the active tDCS group also showed reduced pos-
terior alpha power during WM maintenance. As others showed alpha
power increases with greater task demands (Jensen and Tesche, 2002;
Manza et al., 2014), we interpreted the decrease as evidence of im-
proved task efficiency (Jones et al., 2017).

Unlike tDCS, transcranial alternating current stimulation (tACS) can
entrain neural oscillations (Antal and Paulus, 2013; Herrmann et al.,
2013). In the few studies applying tACS to WM tasks, stimulation site
and frequency are key parameters (reviewed in: Albouy et al., 2018).
TACS can improve WM performance after theta tACS to parietal cortex
(P3 or P4), but is less reliable when targeting left prefrontal sites (F3;
Jausovec and Jausovec, 2014; Alekseichuk et al., 2016). Importantly,
recent research reports that simultaneous focal tACS to both left pre-
frontal and left temporal areas improves WM in healthy older adults,
whereas each tACS to either the left prefrontal or temporal region in
isolation has no benefit (Reinhart and Nguyen, 2019). Slowing intrinsic
theta via tACS may improve WM capacity by enabling coupling with
more gamma oscillations per theta peak (Vosskuhl et al., 2015). In
contrast, tACS that synchronizes gamma to the theta trough removes
any benefit of theta tACS (Alekseichuk et al., 2017; Polania et al.,
2012). Thus, tACS likely modulates WM performance through fronto-
parietal networks, with effects depending on tACS frequency, stimula-
tion site, and task demands.

Our goal was to test whether entraining the frequencies altered by
tDCS and WM training would permit one session of tACS to provide
similar WM benefits, but in less time. We predicted that stimulating
frontoparietal theta (7 Hz) would improve WM performance compared
to sham (but see: Wolinski et al., 2018). Second, as reduced alpha
power was associated with improved WM we predicted that 11 Hz tACS
would impair WM performance. To test whether observations would
generalize across WM task demands we included spatial and object
conditions. Finally, we collected an independent measure of WM, as
WM capacity can predict responsiveness to tDCS (Berryhill et al., 2014;
Jones and Berryhill, 2012). Experiment 2 tested whether tACS at a
slower theta frequency (4.5 Hz), which had also been significant in our
previous study, would elicit superior WM effects. Recent findings em-
phasize the role of theta rhythms in sustained attention (e.g. Fiebelkorn
and Kastner, 2019; Fiebelkorn et al., 2018) and improved WM (Meiron
and Lavidor, 2014). It was also significant in our study (Jones et al.,
2017). We also tested whether a frontoparietal, or bifrontal montage
was superior for tACS during object and spatial WM performance. The
bifrontal montage is more common and associated with WM benefits
(Hsu et al., 2019; Hsu et al., 2017; Meiron and Lavidor, 2014; Ruf et al.,
2017; reviewed in: Berryhill and Martin, 2018). We predicted 4.5 Hz
tACS across montages would improve WM.

2. Results: Experiment 1

We calculated the discriminability index (d’) per session and task as
there were unequal numbers of target and non-target trials. This im-
balance can introduce response bias, to which d’ is resistant (Hoy et al.,
2015; Hoy et al., 2016). To answer whether right frontoparietal tACS
affected WM performance we subjected d’ values to a 3 (tACS: sham,
7 Hz, 11 Hz)× 2 (task: object, spatial) repeated-measures ANOVA.
There was a significant tACS condition× task interaction (F1,
29= 3.63, p= .04, partial ƞ2= 0.10; Fig. 1B); post-hoc Tukey tests
showed no pairwise differences (ps > 0.53). There were no main ef-
fects (ps > 0.54). The median correct RTs were faster on the object
task (F1, 29= 8.37, p= .04, partial ƞ2= 0.22), but no other effects
reached significance (ps > 0.41). We subjected OSPAN scores to
median split (high WM capacity mean: 40.6 (SD: 2.13), low WM

capacity mean: 29.73 (SD: 4.64)). ANOVAs including WM capacity
group found no significant effects on d’ (ps > 0.53) or RT (p > .45).

3. Results: Experiment 2

A repeated-measures ANOVA of d’ evaluated tACS montage (bi-
frontal, frontoparietal, sham)×WM task (object, spatial). Performance
was better on the spatial task (F1, 37= 5.97, p= .02, partial ƞ2= 0.14).
No main effect of montage emerged (p > .84). There was a significant
montage× task interaction (F1, 37= 4.85, p= .01, partial ƞ2= 0.12;
Fig. 1C). Frontoparietal tACS improved object WM (t37= 2.33, p= .03)
but impaired spatial WM (t37= 1.43, p= .16). Bifrontal tACS had no
effect (both ps > 0.38). RTs revealed a main effect of task (F1,
37= 9.99, p < .01, partial ƞ2= 0.21), but no interaction (p > .13).
WM capacity (high WMC mean: 39 (SD: 2.52), low WMC mean: 27.68
(SD: 5.36)) revealed no significant effects for d’ (both ps > 0.09, see
Fig. 2B) or RTs (ps > 0.44).

4. Discussion

Shortcuts are appealing; arguably no more so than for improving
cognition. The goal of this project was to bypass onerous longitudinal
WM training paradigms by replacing multiple WM training sessions
paired with tDCS with just one session of tACS. The previous tDCS and
WM training study revealed enhanced frontoparietal phase locking
synchrony that tACS could mimic because it can modulate oscillations.
We thought we could leverage our EEG observations characterizing the
mechanistic changes in neural activity that drove behavioral shifts, but
we failed overall. Our results revealed behavioral improvement on WM

Fig. 1. Example trial sequences of the A) object and B) spatial 3-back tasks. For
each image, a button press response indicated whether the current stimulus
matched the stimulus presented 3-items earlier. C, D) Current modeling the
tACS montages: frontoparietal (C), and bifrontal (D).
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performance paired with frontoparietal theta, such that slower theta
(4.5 Hz) was more effective than faster theta (7 Hz). Other manipula-
tions had no effect, including bifrontal theta tACS that we predicted
would improve WM and frontoparietal 11 Hz tACS that we predicted
would disrupt WM. Finally, there was some task selectivity such that
the subtle effects were not uniformly generalized across spatial and
object WM tasks. The spatial impairment may have occurred due to
interference in right frontoparietal endogenous oscillations with the
4.5 Hz tACS. Furthermore, spatial tasks are believed to rely on fronto-
temporal connections (reviewed in: Herweg and Kahana, 2018) and the
exogenous frontoparietal tACS may have disrupted this connection.
Below we discuss several relevant points and suggestions to guide fu-
ture efforts at leveraging one neuromodulatory approach to improve
another.

One primary concern is that the tACS protocols were ineffective. Of
the key paradigm parameters, we eliminate the concern of the duration
of tACS effects because of foundational work demonstrating that 10min
of tACS produces changes lasting 30min (Neuling et al., 2013). Our
online (during task) stimulation lasted 15min to correspond with the
full length of the WM tasks. Stimulation intensity was low (1mA) and
this may be a major issue for mid- to higher- level cognitive tasks and
frontal stimulation sites. We applied low intensity stimulation because
of the truly distracting phosphenes participants reported above 1mA.
This is a known phenomenon attributed to retinal responses and makes
frontal alpha tACS problematic (Schutter and Hortensius, 2010). A third
concern is that the WM tasks might have been too easy, given the high
d’ values. Although the 3-back is challenging, adaptive WM tasks may
better maintain an equal level of difficulty across participants, espe-
cially given the within-subject design. Finally, we note that these data
fail to replicate a similar paradigm that found significant theta tACS
(4.5 Hz) induced WM benefits when applied to bilateral PFC locations
(Meiron and Lavidor, 2014), as well as other research that improved
multitasking with bilateral PFC theta tACS (6 Hz; Hsu et al., 2019; Hsu
et al., 2017). This failure to replicate may have occurred due to dif-
ferences in experimental paradigms and task demands. Specifically,
despite the same electrode locations as the Hsu et al publications, their
electrodes were smaller, their frequency differed (6 Hz), as did their
task focused on attentional multitasking. The differences between the
current manuscript and the Meiron & Lavidor study include their use of
smaller electrodes (4x4 cm), a slight difference in electrode placement
(between F3/4 and AF3/4), and an easier task (2-back word recogni-
tion). Their study also was between subjects and the two groups of 12
participants were exclusively female by design. Thus, as in tDCS de-
signs, the tACS field may be vulnerable to replication difficulty.

Given the difficulties in reliability and reproducibility in both neu-
rostimulation and cognitive training studies, Bayesian analyses provide
advantages over reports relying only on p-values (Rouder et al., 2012).

Importantly, parametric statistics are particularly vulnerable to sam-
pling error. The Bayes Factor (BF), which represents the likelihood the
data under one hypothesis as compared to another (such as the null),
allows for both reporting of the hypothesized effect as well as evidence
for a null hypothesis. Traditional p-values cannot distinguish between
evidence for the null hypothesis and lack of evidence for the hypothe-
sized effect (reviewed in: Dienes, 2014). In cognitive studies, Bayesian
analyses are often applied to investigate evidence of transfer following
WM training (De Simoni and von Bastian, 2018; Guye and von Bastian,
2017) and to report that the effectiveness of such interventions is often
lower than reported (reviewed in: Dougherty et al., 2016; Lampit et al.,
2014). Therefore, given the null results in Experiment 1, a subsequent
Bayesian repeated measures ANOVA in the same manner as the tradi-
tional ANOVA provided a consistent interpretation. There is strong
evidence of a null effect of tACS (BF10= 0.11). Furthermore, we pre-
dicted an interaction of tACS and WM task and for this prediction there
was no supporting evidence (BF10= 0.38). We note that our experi-
mental design was not optimized for Bayesian analyses. Importantly,
however, the take home message remains consistent regardless of the
statistics leveraged in these analyses: tACS is not the fast-track brain
hack of the future.

Neuromodulation remains an emerging field challenged by a large
parameter space. Importantly, the mechanism underlying tACS differs
from that of tDCS and there are important differences in their appli-
cation (Antal and Herrmann, 2016). Thus, directly applying the ob-
servations from a tDCS study to a tACS protocol likely requires trans-
lation. However, there is reasonable value in doing so, after all both
work by modulating neural activity to effect behavior. For example,
tDCS can improve performance on sustained attention WM tasks
(Andrews et al., 2011; Mulquiney et al., 2011; Zaehle et al., 2011).
Similarly, a single session of 6 Hz tACS can be effective at improving
performance on divided attention tasks (Hsu et al., 2019; Hsu et al.,
2017). Across all neuromodulatory approaches, it may be essential to
apply the appropriate frequency for each individual (Ali et al., 2013;
Gulbinaite et al., 2017; Reinhart and Nguyen, 2019). This view is in line
with the recent research demonstrating WM does not improve after a
uniform tACS frequency administered to all participants, but it can
when the tACS frequency is tailored to an individual endogenous theta
peak (Reinhart and Nguyen, 2019).

In conclusion, the one-size-fits-all approach to neurostimulation is a
suboptimal strategy for ensuring reliable benefits across homogenous
populations. Going forward, pairing neurostimulation with neural
measurements such as pre- and post-EEG recordings can clarify the
neural mechanism(s) driving behavioral benefits. Tailoring stimulation
protocols per known individual variables that modulate the effective-
ness of tACS will maximize the cognitive benefits gained from neuro-
stimulation interventions and reduce the variability when using

Fig. 2. A) Experiment 1: Discriminability (d′) scores for each tACS frequency and task. The significant interaction shows that 7 Hz frontoparietal tACS lowered
performance on the spatial stimuli and 11 Hz tACS also lowered spatial performance. B) Experiment 2: Discriminability (d′) scores for each tACS montage and task.
Frontoparietal tACS (4.5 Hz) improved object WM and impaired spatial WM. Error bars represent 95% confidence intervals.
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neurostimulation techniques. Identifying and addressing these factors
requires consideration before attempting to improve WM with neuro-
stimulation. This gap in knowledge is preventing reproducibility and a
deeper understanding of the mechanisms that determine the effective-
ness of both neurostimulation and WM training protocols.

5. Methods

5.1. Participants

Experiment 1: 30 right-handed neurotypicals participated (mean age
(SD): 24.60 (6.54) years, 23 females). The University of Nevada
Institutional Review Board approved both experiments. Participants
provided informed consent and received $20. Three participants were
excluded due to below chance performance; 1 participant failed to re-
turn.

Experiment 2: 38 right-handed neurotypicals participated (mean age:
24.5, SD: 5.48, 25 females). Two participants were excluded due to
below chance performance.

5.2. WM tasks

3-Back Tasks. Participants completed blocks of spatial and object 3-
back tasks (Fig. 1). Spatial trials: participants remembered stimulus
locations (green circles: 3°) across nine locations (500ms), interleaved
with delays (3000ms). Participants indicated whether the current lo-
cation matched the location shown two presentations earlier (match:
‘J’, non-match: ‘F’). There were 45 practice and 138 experimental trials
(66% non-match, 7min). Object trials: identical but stimuli were cen-
trally-located symmetrical polygons (Jiang et al., 2000). The WM tasks
started immediately after the tACS begun in order to be conducted in an
online manner.

Operation Span. Participants completed the Automated Operation
Span (OSpan) (Unsworth et al., 2005) task as an independent measure
of WM. Arithmetic problems are interleaved with letter sequences.

5.3. Transcranial alternating current stimulation

Experiment 1: Each session (3, counterbalanced), participants re-
ceived 15min of: 7 Hz tACS (in phase, 6300 cycles, 100 cycles fade in/
out), 11 Hz tACS (in phase, 0 degrees phase angle offset, 9900 cycles,
100 cycles fade in/out), or sham tACS. Stimulation ramped over 20-
seconds (0 to 1mA). During sham, stimulation returned to 0mA.
Piloting at 1.5mA (4 participants, 11 Hz) revealed distracting phos-
phenes (Matsumoto and Ugawa, 2017), and no participant reported any
major adverse effects as a result of any stimulation condition when
probed after each session. A second experimenter entered the condition
code to preserve double-blinding. Electrodes lay over right PFC (F4) and
PPC (P4). Each 5x5 cm electrode was encased in a saline-soaked
sponge.

Experiment 2: During 3 counterbalanced sessions (> 24 h washout)
participants received sham or 15min of 1mA 4.5 Hz tACS over right
frontoparietal (F4, P4), or bifrontal (F3, F4) sites. Current was in phase,
4050 cycles, 100 cycles fade in/out. Participants and experimenter
were double-blinded as to condition and no participants reported that
they believed that they received sham stimulation on after any session.
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